Cohen Lenstra partitions and mutually annihilating matrices over a finite field
نویسندگان
چکیده
Motivated by questions in algebraic geometry, Yifeng Huang recently derived generating functions for counting mutually annihilating matrices and nilpotent over a finite field. We give different derivation of his results using statistical properties random partitions chosen from the Cohen-Lenstra measure.
منابع مشابه
Cohen-lenstra Sums over Local Rings
où R est un anneau commutatif local et u est un entier non-negatif, la sommation s’étendant sur tous les R-modules finis, à isomorphisme prés. Ce problème est motivé par les heuristiques de Cohen et Lenstra sur les groupes des classes des corps de nombres, où de telles sommes apparaissent. Si R a des propriétés additionelles, on reliera les sommes ci-dessus à une limite de fonctions zêta des mo...
متن کاملCohen–lenstra Heuristic and Roots of Unity
We report on computational results indicating that the well-known Cohen–Lenstra–Martinet heuristic for class groups of number fields may fail in many situations. In particular, the underlying assumption that the frequency of groups is governed essentially by the reciprocal of the order of their automorphism groups, does not seem to be valid in those cases. The phenomenon is related to the prese...
متن کاملA Cohen-Lenstra phenomenon for elliptic curves
Given an elliptic curve E and a finite Abelian group G, we consider the problem of counting the number of primes p for which the group of points modulo p is isomorphic to G. Under a certain conjecture concerning the distribution of primes in short intervals, we obtain an asymptotic formula for this problem on average over a family of elliptic curves.
متن کاملThe Cohen–Lenstra heuristic: Methodology and results
Article history: Received 3 December 2009 Available online 27 January 2010 Communicated by Gunter Malle
متن کاملCohen-Lenstra Heuristics of Quadratic Number Fields
We establish a link between some heuristic asymptotic formulas (due to Cohen and Lenstra) concerning the moments of the p–part of the class groups of quadratic fields and formulas giving the frequency of the values of the p–rank of these class groups. Furthermore we report on new results for 4–ranks of class groups of quadratic number fields.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2022
ISSN: ['1873-1856', '0024-3795']
DOI: https://doi.org/10.1016/j.laa.2022.03.005